
Chapter 13.4 Gene Regulation

All of your cells contain the same DNA. Your nerve cells do not look like or act like skin cells, so how do they know what to do and what proteins to produce?

When a gene is actually transcribed and translated, it is said to be

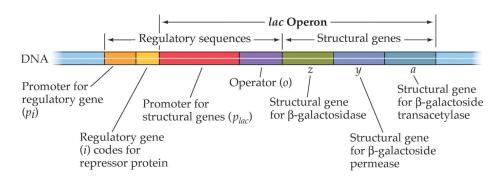
I. Basic Structure of a Gene

• When looking at a gene sequence, there are several important regions that enzymes and other proteins recognize.

sites-

II. Prokaryotic Gene Regulation

•	Prokaryotes have	a single chromosome a	nd are unicellular and t	they turn genes	on and off
---	------------------	-----------------------	--------------------------	-----------------	------------


Operon- group of genes that operate together for a function, can be	or
---	----

•	Α	molecule can block, or repress, transcription by binding to a region called
	the	

- Inducible- in presence of a substance,
- Repressible- in presence of a substance, _____

Example: lac Operon

- The *lac* operon is a series of genes in ______ that operates together to metabolize (use as food) lactose, the sugar found in _____.
 - Lactose is a disaccharide made of ______ and ____
 - In the *presence* of lactose, certain enzymes must be produced to break them down

•	P (pror	noter)-						
•	O (operater)- region that a repressor can bind, from							
•	Gene Z- codes for β-galactosidase which							
•		Y- codes for Permease, which						
•	Gene A	A- codes for a protein whose function is	s unknown					
Steps	in the La	c Operon						
•	In abse	ence of lactose, a repressor binds to th	ne operator, blocl	king	· · · · · · · · · · · · · · · · · · ·			
	1.	. In the presence of lactose, lactose binds to the repressor causing it to						
	2.	2. RNAP transcribes gene Z (codes for β-galactosidase) and gene Y (codes for permease)						
	3. Ribosomes β-galactosidase and permease							
	4.	β-galactosidase						
	5.	5. Permease allows lactose to flood into the bacterial cell						
	6.	Once lactose is all broken down,						
	7.	This stops		 of β-galactosi	dase and permease			
III. E	ukaryot	tic Gene Regulation						
•	No operons, genes are regulated individually		Upstream enhancer	TATA box	Introns			
•	Similar process, but much more complex		Promoter					
	than pr	okaryotic gene regulation	sequences		Exons			
_		Prokaryotes have no cell			Direction of transcription			
		specialization			Exons get expressed Introns get cut out			
•	After fe	ertilization and mitosis occurs thousand	ds of times, cells	specialize into	miliono doi out out			
	their life	e-long functions through a process cal	lled					
•	Differe	ntiation is controlled by		<u>_</u> .				
	 Some genes get turned off 		(your liver cells do not express genes					
		that make proteins in the skin)						
	_	 Like of what cells become what part of the body 						
				s grows where				